Hardware-in-the-Loop
a system's simulation test of embedded controls by the electrical emulation of it's motors, sensors and actuators.
See Also: HIL
-
Product
Configure Battery Pack Simulator for Battery Management System (BMS) Hardware-in-the-Loop (HIL) Testing
Simulator
Customized configuration for battery pack simulator by Bloomy
-
Product
5-Axis Hardware-In-the-loop Systems
-
Combining a 3-Axis Flight Motion Simulator (FMS) with a 2-Axis Target Motion Simulator (TMS) leads to a 5-Axis motion simulator design. This allows comprehensive HardWare-In-the-Loop tests (HWIL) for testing and development of guided missiles, munitions and other inertial systems. Almost 100% of all HWIL systems worldwide delivered over the last 50 years have been designed and built by ACUTRONIC and CARCO Electronics.
-
Product
VeriStand
-
VeriStand helps you get your hardware-in-the-loop or test cell control and monitoring system up and running quickly. With a wide range of out-of-the-box functionality that includes configurable data acquisition and logging, test sequencing, and simulation model integration, VeriStand reduces the time needed to test your products. You can also use a variety of software tools to add custom functionality to VeriStand, which makes it flexible enough to adapt to even the most complex applications. Choosing VeriStand gives you the confidence that your test system will perform reliably while providing the flexibility you need to meet your real-time test requirements.
-
Product
PXI Fault Insertion (Fault Injection) Modules
-
PXI Fault Insertion Units (FIU), also known as Fault Injection switch products, are designed specifically for safety-critical applications where the response of a control system is required to be evaluated when sensor connections behave in unexpected ways. These modules are scalable solutions that can be used to switch signals between simulations and real-life devices in a multitude of hardware-in-the-loop (HIL) simulation and test systems. The fault insertion unit can significantly simplify and accelerate the testing, diagnosis and integration work in HIL applications.
-
Product
Test System
BMS HIL
Test System
The BMS Hardware-in-the-Loop (HIL) Test System is a high performance platform providing all necessary input signals used for battery pack simulation. A real-time operating system executes complex cell and pack models commonly used for BMS algorithm development and firmware regression testing.
-
Product
Panel-mounted Power Amplifier(Hardware In The Loop Simulation)
PA30Bi
-
PA30Bi is the panel-mounted type real time simulation amplifier with three-phase current and four-phase voltage.
-
Product
Vehicle Multiprotocol Interface Device
Interface
The Vehicle Multiprotocol Interface Device excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time for processing complex models and applications.
-
Product
Environmental Control System Test Platform
Test Platform
The Airframe Environmental Control System Test Platform provides a hardware-in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of cockpit and cabin environmental control systems for airframes. The system simulates a military or commercial airframe cabin, including sensors and actuators from the control system and the passengers. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation systems.
-
Product
PXIe-7862, Kintex-7 325T FPGA, 16-Channel AI, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
786672-01
Multifunction Reconfigurable I/O
PXIe, Kintex-7 325T FPGA, 16-Channel AI, 1 MS/s, PXI Multifunction Reconfigurable I/O Module - The PXIe-7862 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of timing and synchronization. With 16 analog input channels connected directly to a Kintex-7 325T FPGA, you have ample space to design applications that require precise timing such as hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXIe-7862 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. The PXIe-7862 also includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
Product
PXI Digital Reconfigurable I/O Module
ITA
PXI Digital Reconfigurable I/O Modules feature a user-programmable FPGA for onboard processing and flexible I/O operation. You can completely control the synchronization and timing of all signals and operations along with custom onboard decision making. The PXI Digital Reconfigurable I/O Module is suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in-the-loop (HIL) test, custom communications protocols, bit error rate testing, and other applications requiring precise timing and control.
-
Product
PXIe-1486, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO FPD-Link™ Interface Module
787455-01
Interface
The PXIe-1486 combines the Texas Instruments Flat Panel Display Link™ (FPD-Link™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1486 makes use of a combination of FPD-Link™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable FPD-Link™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the FPD-Link™ channels. The PXIe-1486 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). FPD-Link is a trademark of Texas Instruments.
-
Product
LIN Interface Device
LIN Interface
LIN Interface Devices are bus interfaces for developing applications with the NI-XNET driver. The NI-XNET device-driven DMA engine couples the LIN bus to host memory to minimize message latency. You can import, edit, and use signals from LDF databases in integrated LIN databases. LIN Interface Devices work well for applications requiring real-time, high-speed manipulation of many LIN frames and signals, such as hardware-in-the-loop simulation, rapid control prototyping, bus monitoring, and automation control.
-
Product
*C Series CAN Interface Module
CAN Interface
C Series CAN Interface Modules communicate using onboard transceivers for High-Speed/Flexible Data‑Rate or Low-Speed/Fault Tolerant CAN. C Series CAN Interface Modules are either compatible with NI-XNET or the NI-985x driver, depending on model.Using NI-XNET, you can create applications that require real-time, high-speed manipulation of hundreds of CAN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series CAN Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
Product
Power Electronics Test Bench
OP1300
-
The multi-purpose and ready-to-use Power Electronics Test Bench combines a state-of-the-art Hardware-in-the-Loop (HIL) simulator from OPAL-RT with Imperix’s Rapid Control Prototyping (RCP) system and real power hardware. It enables rapid development of power electronics, drives and smart-grid applications across industry and academia.
-
Product
NI Electric Motor Simulation Toolkit
-
PMSM, ACIM, SRM, and power inverter models for high-performance simulationHigh-fidelity simulations with support for user-defined parameter lookup tables or JMAG-RT models. Open software for full flexibility and customizationLabVIEW project templates to build a software-only simulation and hardware-in-the-loop application. Direct integration with NI VeriStand for configuration-based real-time test. Models for desktop simulation, LabVIEW Real-Time simulation, and FPGA-based simulation
-
Product
Doppler Radar Target Simulators
-
Automotive radar sensors play a vital role in the current development of autonomous driving. Their ability to detect objects even under adverse conditions makes them indispensable for environment-sensing tasks in autonomous vehicles. As their functional operation must be validated in-place, a fully integrated test system is required. Radar Target Simulators (RTS) are capable of executing end-of-line, over-the-air validation tests by looping back a received and afterward modified radar signal and have been incorporated into existing Vehicle-in-the-Loop (ViL) test beds before. However, the currently available ViL test beds and the RTS systems that they consist of lack the ability to generate authentic radar echoes with respect to their complexity. The paper at hand reviews the current development stage of the research as well as commercial ViL and RTS systems. Furthermore, the concept and implementation of a new test setup for the rapid prototyping and validation of ADAS functions is presented. This represents the first-ever integrated radar validation test system to comprise multiple angle-resolved radar target channels, each capable of generating multiple radar echoes. A measurement campaign that supports this claim has been conducted.
-
Product
PXI Signal Insertion Switch Module
Switch Module
PXI Signal Insertion Switch Modules, also known as fault insertion units (FIUs), provide a set of feedthrough channels, which make the switch transparent to the system when closed. You can open or short these channels to one of two fault buses, allowing you to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXI Signal Insertion Switch Module can validate the integrity of control systems including engine control units (ECUs) and full authority digital engine controls (FADECs). You can also use the FIU models for hardware-in-the-loop (HIL) applications and electronic reliability tests.
-
Product
Panel-mounted Power Amplifier(Hardware In The Loop Testing)
PA60Bi
-
PA60Bi is the panel-mounted power amplifier, which can produce 3-phase current, with maximum RMS phase current of 60A and maximum output power of 800VA, and 4-phase voltage, with maximum RMS phase voltage of 120V and maximum output power of 60VA.
-
Product
Real-Time Target Machines
-
Speedgoat offers a range of high performance multi-core, multi CPU target computers (target machines) with i3 and i7 CPUs up to 4.2 GHz, and up to 20 cores. Each is optimized for a different application area, from mobile controller prototyping (RCP) to multi-target rack systems for Hardware-in-the-Loop (HIL).
-
Product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787457-01
Interface
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
Product
PXI Vehicle Multiprotocol Interface Module
Interface
PXI Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. PXI Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
Product
Multifunction Reconfigurable I/O Device
Multifunction Reconfigurable I/O
Multifunction Reconfigurable I/O Devices feature a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop (HIL) testing, custom protocol communication, sensor simulation, and high-speed control.
-
Product
Dynamic IR Scene Projectors
Mirage™
-
In 1999, SBIR introduced MIRAGE™, the world’s first integrated Dynamic IR Scene Projection System, designed to support hardware-in-the-loop testing of missile seekers, FLIRs, counter measure simulation and tracking systems. MIRAGE™ is a complete turnkey infrared scene projector that utilizes unique resistive emitter array technology to produce high definition dynamic IR scenes. The original MIRAGE™-1 used a 512 x 511 pixel resistive array emitter capable of frame rates up to 200 Hz. Below is a list outlining the progression of the product line and a list of SBIR’s currently available scene generation systems:
-
Product
PXIe-7865, Kintex-7 160T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
787355-01
Multifunction Reconfigurable I/O
PXIe, Kintex-7 160T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module - The PXIe-7865 features flexibility of timing and synchronization with a user-programmable FPGA for onboard processing and direct control over I/O signals. The PXIe-7865 provides 24 analog output, 2 analog input, and 32, 5V input-tolerant digital I/O channels connected to a Kintex-7 160T FPGA to help you design applications for hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. You can use the dedicated A/D converter (ADC) for independent timing, individual channel triggering, and multirate sampling. Additionally, the PXIe-7865 includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
Product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787458-01
Interface
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
Product
PXIe-1486, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO FPD-Link™ Interface Module
787453-01
Interface
The PXIe-1486 combines the Texas Instruments Flat Panel Display Link™ (FPD-Link™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a … high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1486 makes use of a combination of FPD-Link™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable FPD-Link™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the FPD-Link™ channels. The PXIe-1486 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). FPD-Link is a trademark of Texas Instruments.
-
Product
LIN Interface Module
C Series LIN
LIN Interface
C Series LIN Interface Modules are bus interfaces for developing applications with the NI-XNET driver. The NI-XNET device-driven DMA engine couples the LIN bus to host memory to minimize message latency. You can import, edit, and use signals from LDF databases in integrated LIN databases. C Series LIN Interface Modules work well for applications requiring real-time, high-speed manipulation of many LIN frames and signals, such as hardware-in-the-loop simulation, rapid control prototyping, bus monitoring, and automation control.
-
Product
PXI MultiComputing Remote Control Module
Remote Control Interface
PXI MultiComputing Remote Control Modules enable PXI systems to transfer data at multigigabytes per second with only a few microseconds of latency. You can use these models in applications such as real-time tests, hardware-in-the-loop (HIL) tests, and structural tests that need a large number of distributed PXI systems to share data with low latency.
-
Product
PXIe-7866, Kintex-7 325T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
787354-01
Multifunction Reconfigurable I/O
PXIe, Kintex-7 325T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module - The PXIe-7866 features flexibility of timing and synchronization with a user-programmable FPGA for onboard processing and direct control over I/O signals. The PXIe-7866 provides 24 analog output, 2 analog input, and 32, 5V input-tolerant digital I/O channels connected to a Kintex-7 325T FPGA to help you design applications for hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. You can use the dedicated A/D converter (ADC) for independent timing, individual channel triggering, and multirate sampling. Additionally, the PXIe-7866 includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
Product
PXIe-7868, Kintex-7 325T FPGA, 18-AO Channels, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
785571-01
Multifunction Reconfigurable I/O
Kintex-7 325T FPGA, 18-AO Channels, 1 MS/s, PXI Multifunction Reconfigurable I/O Module—The PXIe-7868 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of timing and synchronization. With 18 analog output channels connected directly to a Kintex-7 325T FPGA, you have ample space to design applications that require precise timing such as hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXIe-7868 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. The PXIe-7867 also includes peer-to-peer streaming for direct data transfer to other PXI Express modules.





























