Filter Results By:
Products
Applications
Manufacturers
Software Defined Radio
function of wireless communication transmitter and receiver is changed by software.
See Also: Radio, Radio Frequency, Ham Radio, Mobile Radio, SDR
-
product
USRP-2900, 70 MHz to 6 GHz USRP Software Defined Radio Device
784039-01
70 MHz to 6 GHz USRP Software Defined Radio Device - The USRP‑2900 is a tunable RF transceiver with full-duplex operation. It offers bus-powered connectivity with USB 3.0 or USB 2.0. You also can use the NI USRP‑2900 for the following communications applications: white space; broadcast FM; public safety; land-mobile, low-power unlicensed device (ISM) bands; sensor networks; amateur radio; or GPS.
-
product
50 MHz to 2.2 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
783926-01
50 MHz to 2.2 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device - The USRP-2950 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. With the flexible hardware architecture and the LabVIEW unified design flow, researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The USRP-2950 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) reference clock. GPS disciplining delivers improved frequency accuracy and synchronization capabilities.
-
product
USRP-2954, 10 MHz to 6 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
783153-01
The USRP-2954 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and shorten time to results. You can prototype a range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The USRP-2954 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) reference clock. The GPS disciplining delivers improved frequency accuracy and synchronization capabilities.
-
product
USRP Software Defined Radio Stand-Alone Device
The USRP Software Defined Radio Stand-Alone Device consists of an onboard processor, FPGA, and RF front end. You can program this device using either LabVIEW Communications System Design Suite or an open-source software workflow, depending on the operating system you choose. You can provision the device with NI Linux Real-Time, Linux Fedora, or Linux Ubuntu real-time operating systems. The USRP Software Defined Radio Stand-Alone Device enables you to prototype a range of advanced research applications such as stand-alone LTE or 802.11 device emulation; Medium Access Control (MAC) algorithm development; multiple input, multiple output (MIMO); heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.
-
product
USRP-2944, 10 MHz to 6 GHz, Reconfigurable USRP Software Defined Radio Device
783149-01
The USRP-2944 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
400 MHz to 4.4 GHz, Reconfigurable USRP Software Defined Radio Device
783924-01
400 MHz to 4.4 GHz, Reconfigurable USRP Software Defined Radio Device - The USRP-2942 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
USRP-2901, Software Defined Radio Device Bundle
784114-01
USRP-2901 Software Defined Radio Device Bundle - The USRP-2901 Teaching Bundle includes two USRP (Universal Software Radio Peripheral) Software Defined Radio Devices, turnkey courseware, and other accessories such as USB 3.0 cables and SMA attenuators. Students can use USRP … Software Defined Radio Devices with LabVIEW to experiment with real-world signals in introductory communications and digital communications laboratories. The USRP-2901 Teaching Bundle helps students experiment with FM radio, GPS, GSM, Bluetooth, and ISM signals. The bundle also includes components of a lab station that students can use to gain hands-on experience with live communication links between multiple USRP Software Defined Radio Devices.
-
product
USRP-2900, Software Defined Radio Device Bundle
784113-01
USRP-2900 Software Defined Radio Device Bundle - The USRP-2900 Teaching Bundle includes two USRP (Universal Software Radio Peripheral) Software Defined Radio Devices, turnkey courseware, and other accessories such as USB 3.0 cables and SMA attenuators. Students can use USRP … Software Defined Radio Devices with LabVIEW to experiment with real-world signals in introductory communications and digital communications laboratories. The USRP-2900 Teaching Bundle helps students experiment with FM radio, GPS, GSM, Bluetooth, and ISM signals. The bundle also includes components of a lab station that students can use to gain hands-on experience with live communication links between multiple USRP Software Defined Radio Devices.
-
product
USRP-2940, 50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device
783146-01
50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device - The USRP-2940 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
400 MHz to 4.4 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device
783927-01
400 MHz to 4.4 GHz, GPS-Disciplined OCXO, Reconfigurable USRP Software Defined Radio Device - The USRP-2952 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and shorten time to results. You can prototype a range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The USRP-2952 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) reference clock. GPS disciplining delivers improved frequency accuracy and synchronization capabilities.
-
product
USRP-2974, 10 MHz to 6 GHz, x86 Processor, GPS-Disciplined OCXO, USRP Software Defined Radio Stand-Alone Device
785606-01
The USRP-2974 is built on the LabVIEW reconfigurable I/O (RIO) architecture with an onboard Intel Core i7 processor running the NI Linux Real-Time OS. The USRP-2974 is a USRP Software Defined Radio Stand-Alone Device, meaning that you can target the onboard processor with LabVIEW Communications System Design Suite to deterministically perform processing. The USRP-2974 is also equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) Reference Clock. You can prototype a range of advanced research applications that include stand-alone LTE or 802.11 device emulation; Medium Access Control (MAC) algorithm development; multiple input, multiple output (MIMO); heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding. The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.
-
product
USRP-2945, 10 MHz to 6 GHz, 80 MHz Bandwidth, Reconfigurable USRP Software Defined Radio Device
785263-01
10 MHz to 6 GHz, 80 MHz Bandwidth, Reconfigurable USRP Software Defined Radio Device - The USRP-2945 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless receiver systems. This software defined radio reconfigurable device is designed for over-the-air signal acquisition and analysis. It features a two-stage superheterodyne architecture with four independent receiver channels and shares local oscillators for phase-coherent operation. It also offers a Kintex-7 FPGA programmable with the LabVIEW FPGA Module. With these features, the USRP-2945 has the RF and processing performance for applications including spectrum monitoring, direction finding, signals intelligence, wideband recording, and radar prototyping.
-
product
Software Defined Radio
NI software defined radios (SDRs) provide the design solution to rapidly prototype wireless communications systems, which leads to faster results. You can present applications with real-world signals such as multiple input, multiple output (MIMO) and LTE/WiFi testbed.
-
product
USRP‑2932, 20 MHz Bandwidth, 400 MHz to 4.4 GHz, Included GPS-Disciplined OCXO, USRP Software Defined Radio Device
781911-01
20 MHz Bandwidth, 400 MHz to 4.4 GHz, Included GPS-Disciplined OCXO, USRP Software Defined Radio Device - The USRP‑2932 is a tunable RF transceiver with a high-speed analog‑to‑digital converter and digital‑to‑analog converter for streaming baseband I and Q signals to a host PC over 1 Gigabit Ethernet. You can also use the NI USRP‑2930 for the following communications applications: WiFi, WiMax, S‑band transceivers, and 2.4 GHz industrial, scientific, and medical (ISM) band transceivers.
-
product
Ettus USRP X410, 1 MHz to 7.2 GHz, 400 MHz Bandwidth, GPS-Disciplined OCXO, USRP Software Defined Radio Device
787272-01
The Ettus USRP X410 integrates hardware and software to help you prototype high-performance wireless systems and perform over-the-air signal generation and analysis. Additionally, the Ettus USRP X410 features a two-stage superheterodyne architecture with four independent transmitter and receiver channels. It also features a Xilinx Zynq Ultrascale+ RFSoC with programmable FPGA supporting the Open Source UHD tool flow as well as LabVIEW FPGA. With these features, the Ettus USRP X410 has the RF and processing performance for applications such as wireless communications prototyping, spectrum monitoring, and signals intelligence. The Ettus USRP X410 is equipped with a GPS-disciplined 10 MHz oven-controlled crystal oscillator (OCXO) Reference Clock, which improves frequency accuracy and synchronization.
-
product
50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device
783923-01
50 MHz to 2.2 GHz, Reconfigurable USRP Software Defined Radio Device - The USRP-2940 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless communication systems. Built on the LabVIEW reconfigurable I/O (RIO) architecture, USRP RIO delivers an integrated hardware and software solution, so researchers can prototype faster and significantly shorten time to results. You can prototype a wide range of advanced research applications that include multiple input, multiple output (MIMO); synchronization of heterogeneous networks; LTE relaying; RF compressive sampling; spectrum sensing; cognitive radio; beamforming; and direction finding.
-
product
Software Defined Radio Program
Scientific Research Corp. STI Division
SRC is on the forefront of software defined radio technology, test, and interoperability. We provide systems engineering support for waveform testing, software and hardware integration, standards compliance, and information assurance.
-
product
PXI-5670, 2.7 GHz PXI Vector Signal Generator
778768-02
2.7 GHz PXI Vector Signal Generator—The PXI‑5670 has the power and flexibility you need for product development applications from design through manufacturing. It can generate custom and standard modulation formats such as AM, FM, PM, ASK, FSK, PSK, MSK, and QAM. The PXI‑5670 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as for emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks.
-
product
Base Station Emulator
SUTP 5018
Designed to create a custom cellular environment to serve testing and characterization needs. The combination of high power, real-time computing and the software defined radio platform enables this instrument to create your own cells for testing in a compact size and cost-efficient way.
-
product
PXIe-5672, 2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator
779900-03
2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator —The PXIe‑5672 features quadrature digital upconversion, which reduces waveform download and signal generation time. It is a general-purpose vector signal generator that can generate standard modulation formats such as AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, and QAM. The PXIe‑5672 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks. For specific communications standards, you can use various software add-ons to generate modulated signals according to standards such as WCDMA, DVB‑H, and ZigBee.
-
product
Mezzanine FPGA I/O Module
DAC-MOD1
Curtiss-Wright Defense Solutions
Simple analog IO to a processor is no longer enough. Software Defined Radio (SDR), RADAR, and telecommunications applications demand closely coupled high performance processing.
-
product
NI-5783, 40 MHz Bandwidth Transceiver Adapter Module for FlexRIO
784364-02
The NI‑5783 has DC‑coupled inputs with two variants: an elliptic filter variant optimized for frequency-domain applications and a Butterworth filter variant optimized for time-domain applications. The NI‑5783 is particularly well suited for applications in software defined radio, electronic warfare, high-performance machine control, and medical imaging. The NI‑5783 is compatible only with the PXI FPGA Module for FlexRIO modules that have a Kintex‑7 FPGA and the stand-alone Controller for FlexRIO.
-
product
GNSS Simulator
NCS NOVA
The NCS NOVA is IFEN´s newest RF signal generator technology based on a modular and highly flexible Software Defined Radio (SDR) platform. This flexibility makes the NCS NOVA the ideal choice for a wide range of test applications.The NCS NOVA`s full upgradeability makes it a future-proof investment for the upcoming multi-frequency era in commercial and professional applications. It is far more than just a GPS/GNSS Simulator!
-
product
Mezzanine FPGA I/O Module
ADC-MOD2
Curtiss-Wright Defense Solutions
Simple analog input to a processor is no longer enough. Software Defined Radio (SDR), RADAR, and telecommunications applications demand closely coupled high performance processing.
-
product
CPS-8910 , Switch Device for PCI Express
784307-01
PCI Express, Cabled Switch Device—The CPS‑8910 is designed for large multiple-input, multiple output (MIMO) expansion configurations and system control on the PXI platform or software defined radio devices. The CPS‑8910 provides two PCI Express upstream ports and eight downstream ports for seamless system expansion. You can connect the downstream ports to external devices, such as a Software Defined Radio Reconfigurable Device, to create large multichannel MIMO systems. You also can connect multiple CPS‑8910 switch boxes to a single PXI Express chassis to create massive MIMO systems with a Software Defined Radio Reconfigurable Device. The large data throughput capacity makes the CPS‑8910 an ideal data aggregator for massive MIMO systems. You can use the CPS‑8910 with copper or fiber-optic cables.
-
product
NI-5783, 40 MHz Bandwidth Transceiver Adapter Module for FlexRIO
784364-01
The NI‑5783 has DC‑coupled inputs with two variants: an elliptic filter variant optimized for frequency-domain applications and a Butterworth filter variant optimized for time-domain applications. The NI‑5783 is particularly well suited for applications in software defined radio, electronic warfare, high-performance machine control, and medical imaging. The NI‑5783 is compatible only with the PXI FPGA Module for FlexRIO modules that have a Kintex‑7 FPGA and the stand-alone Controller for FlexRIO.
-
product
PXIe-5841, 6 GHz, 1 GHz Bandwidth, RF PXI Vector Signal Transceiver
785832-01
6 GHz, 1 GHz Bandwidth, RF PXI Vector Signal Transceiver - The PXIe-5841 is a vector signal transceiver (VST) with 1 GHz of instantaneous bandwidth. It combines vector signal generator, vector signal analyzer and high-speed serial interface capabilities with FPGA-based real-time signal processing and control. The PXIe-5841 features the flexibility of a software defined radio architecture with RF instrument class performance. This VST delivers the fast measurement speed and small form factor of a production test box with the flexibility and high performance of R&D-grade box instruments. The PXIe-5841 is available with an optional high-performance local oscillator module for improved phase noise, measurement time, and EVM performance. You can use the VST to test a variety of cellular and wireless standards such as Wi-Fi 6 and 5G NR. In addition, you can expand the small, two slot 2U PXI Express form factor to support multiple input, multiple output (MIMO) configurations.
-
product
PXIe-5645, 6 GHz, 80 MHz Bandwidth, RF and Baseband PXI Vector Signal Transceiver
782377-01
6 GHz, 80 MHz Bandwidth, RF and Baseband PXI Vector Signal Transceiver—The PXIe‑5645 combines a vector signal generator and vector signal analyzer with FPGA-based real-time signal processing and control into a single device, also known as a VST. Because of this software-designed approach, the PXIe‑5645 offers the flexibility of a software defined radio architecture with RF instrument class performance. The PXIe‑5645 features a high-performance, differential or single-ended baseband I/Q interface. This interface allows the PXIe‑5645 to address many additional applications, such as testing both the upconverted RF and downconverted baseband signals of a device with a single instrument.
-
product
Wireless Test Solutions
Adivic/Chroma Group has been in the development of RF & Wireless test solutions for more than a decade. Take RF Recorder as an example, it has been adapted by all major Japanese & Korean automotive brand names such as Mitsubishi, Honda, Hyundai,.. ,most of the global IC design houses with DTV chips, and also military entities in NATO. With the same customer-proved Software Defined Radio architecture, we have introduced Wi-Fi, Bluetooth tester since 2014. It will soon cover other current/future wireless standards such as 4G/LTE, 802.11ax, 802.11ah, etc.
-
product
PXIe-5672, 2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator
779900-01
2.7 GHz, 20 MHz Bandwidth Digital Upconverter Included, PXI Vector Signal Generator —The PXIe‑5672 features quadrature digital upconversion, which reduces waveform download and signal generation time. It is a general-purpose vector signal generator that can generate standard modulation formats such as AM, FM, PM, ASK, FSK, MSK, GMSK, PSK, QPSK, PAM, and QAM. The PXIe‑5672 delivers a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as emerging areas including software defined radio, radio frequency identification (RFID), and wireless sensor networks. For specific communications standards, you can use various software add-ons to generate modulated signals according to standards such as WCDMA, DVB‑H, and ZigBee.





























